
www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

81

STORAGE OPTIMIZATION OF EDUCATIONAL SYSTEM DATA

Catalin BOJA1
PhD Candidate, University Assistant, Economic Informatics Department
Academy of Economic Studies, Bucharest, Romania

E-mail: CatalinBoja@ie.ase.ro

Abstract: There are described methods used to minimize data files dimension. There are
defined indicators for measuring size of files and databases. The storage optimization process
is based on selecting from a multitude of data storage models the one that satisfies the
propose problem objective, maximization or minimization of the optimum criterion that is
mapped on the size of used disk memory. The paper describes different solutions that are
implemented to minimize input/output file size for a software application that manages
educational system data.

Key words: file, database, optimization, data, educational system.

1. File and database dimension

It is considered a finite set of N elements, El1, El2, …, ElN. It is defined an optimum
criterion and it is the Eli element that maximize/minimize the function associated to the
optimum criterion. This defines the optimization problem in the informatics field, the
framework being applied to any software quality characteristic that is included in the
optimization process.

There is considered a collectivity C composed from the elements, c1, c2, ..., cN,
where N represents the total number of elements. Each element ci it is described using M
characteristics, A1, A2, ..., AM.

For each of the software characteristics Aj there are used values or attributes to
describe measured levels of ci elements. The values or attributes are described using arrays
of characters or strings. As a result, the sij characters string describes the levels of the Aj
characteristic for the ci element.

The sij string is characterized by the Lij length which is represented by a number of
symbols.

The problem of storing data into files or conventional databases suppose using
homogenous data structures for each of the collectivity articles. To characterize the required
memory space there are defined a series of indicators that will measure this dimension and
that will provide a quantitative approach of the problem.

In order to determine the memory space reserved by a software application for its
data, there are accomplished the next steps:

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

82

- there are recorded into a table with n lines and m columns the descriptions of C
collectivity elements;

- for each characteristic it is selected the element that has the maximum length;

{ }ijNi

j sL
≤≤

=
1max max

- it is constructed the structure used to describe the characteristic elements; its form is
struct struc
{
 type comp1;
 type comp2;

 type compj;

 type compM
}

and it is defined the indicator LG(type compj) = Lj
max.

- it is obtained the database with fixed length articles, BDF.
In the database, for each element of the C collectivity it recorded an article with the

dimension equal with ∑
=

=
M

j

j
art LL

1
max .

For the students collectivity STUD, described in table 1, there are measured fields
length, maximum dimensions and based on that it is determined the article size.

Table 1. Description of students colectivity

No. Name First
name

Height Gender City Age Date of
Birth

School

1 Anghelache(10) Ion(3) 132(3) Male(4) Bucharest(9) 12(2) 24/11/93(8) 173(3)

2 Bujor(5) Elena(5) 126(3) Female(6) Iasi(4) 12(2) 12/07/93(8) 10(2)

3 Biteanu(7) Cristian(8) 125(3) Male(4) Ploiesti(8) 10(2) 14/04/95(8) 154(3)

4 Cretu(5) Ion(3) 132(3) Male(4) Bucharest(9) 12(2) 06/05/93(8) 3(1)

5 Cretu (5) Roxana(6) 137(3) Female(6) Bucharest(9) 14(2) 27/05/91(8) 189(3)

6 Danciulescu(11) Mihai(5) 137(3) Male(4) Ploiesti(8) 14(2) 16/07/91(8) 56(2)

7 Danciulescu(11) Ion(3) 135(3) Male(4) Bucharest(9) 14(2) 19/07/91(8) 133(3)

8 Ene(3) Catalin(7) 126(3) Male(4) Ploiesti(8) 10(2) 05/03/95(8) 43(2)

9 Ionescu(7) Irina(5) 131(3) Female(6) Bucharest(9) 11(2) 22/06/94(8) 17(2)

10 Ionescu(7) Catalin(7) 128(3) Male(4) Iasi(4) 12(2) 11/02/93(8) 23(2)

SUM 71 52 30 46 69 20 80 23

TOTAL = 391

In the parentheses there is described the dimension of data values as number of

characters.

Table 2. Fields length for students collectivity.

 Name First name Height Gender City Age Date of Birth School
jLmax 11 8 3 6 9 2 8 3

Lart = 50

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

83

The database length, LBD(STUD), is determined with the relation LBD = N * Lart. For
the students database the size is LBD(STUD) = 500 bytes.

It is observed that some of the article fields are smaller than what is defined as
maximum length. As presented next in this paper, this fact will increase the database size
and will highlight an inefficient data storage solution from the memory space viewpoint.

The memory use, or efficiency, degree is determined by the relation:

BD

N

i

M

j
ij

U L

s
G

∑∑
= == 1 1

)lg(

The memory non-use, or inefficiency, degree is determined with the relations

GNU = 1 – Gu or

()

BD

N

i

M

j
ij

j

NU L

sL
G

∑∑
= =

−
= 1 1

max)lg(

For the considered example, the STUD database, the indicators value are GU =
391/500 = 0,78 and GNU = 0,22. These values are used as a comparative base to evaluate
the efficiency of proposed solutions from the view point of reserved memory space.

2. Optimization of used memory size

For the first variant, it is considered a separator character, a marker used to
indicate the end of a array of characters, as “\0” in C/C++ or other programming
languages. This symbol it is noted with α . The sij string to which is appended this string end
marker becomes s’ij.

ijij ss '|| =α ; 1)lg()'lg(+= ijij ss

There are concatenated the ijs' strings, that are used to described the collectivity

elements, ci with i = 1..N. The length indicator that measures the dimension of the database
element has the relation.

MsL
M

j
ij

i
art +=∑

=1
)lg(

The N elements database dimension, is in this case equal with ∑
=

=
N

i

i
artBD LL

1

The memory use efficiency degree of this database format is:

BD

BD
u L

MNLG *−
= or

BD
uNU L

MNGG *1 =−=

In the case of the students STUD database, applying this solution will conduct to the
data form:

Anghelache(10)#Ion(3)#132(3)#Male(4)#Bucharest(9)#12(2)#24/11/93(8)#173(3)#Bujor(5)

#Elena(5)#126(3)#Female(6)#Iasi(4)#12(2)#12/07/93(8)#10(2)…
For this data storage variant, the database dimension is given by the total number

of article characters to which is added the number of bytes reserved for the string end

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

84

markers. The length of the first article of table 1 is 397421 =+=artL , where 42 represents

the number of characters contained in the article.
Values of previous defined indicators are LBD = 391 + 70 = 461 bytes, GNU =

70/461 = 0,15 and GU = 0,85.
To optimize means to find the modality used to construct a database that has a

dimension smaller than other databases of same collectivity, but based on a different data
storage technique.

For this solution, there must be taken into account the particular situations that will
conduct to worse results. These cases are described by the existence of a data set in which

every article size is equal with the maximum dimension. If lg(sij) = jLmax cu i=1,2, …, N and

j=1,2, …, M it results that lg(s’ij) = jLmax +1 and the database BD’ has a dimension equal

with LBD’ = LBD + M * N.

For a database with ten articles that have eight fields and jLmax = 50, applying

these solution will generate a overBD
L = 500 + 70 = 570 bytes database. The overuse

degree GD is given by the relation 1−=
BD

BD
D L

L
G

over
. For the analyzed situation, the indicator

value is GD = 0,14. Based on this result, it is concluded that in this particular case, the
storage variant will generate a database with a 14% increased memory size.

The second variant uses data conversions and compressions that will reduce the
database length. Numerical values represented in the database by characters arrays are
converted, representing them in binary integer or floating format. For example, the values
that describe the student height, will necessitate one byte if there are saved in numerical
format as unsigned integers.

For the table 1 data, the internal binary format to be associated to fields values is
determined based on the variable maximum value and on the fundamental data types
defined by the programming language used to develop the software application. Choosing
C/C++ as programming medium, the numerical fields of the stud structure will require the
memory space described in table 3.

Table 3. Memory space reserved by article numerical fields

Field: Height Age Date of Birth School
Dimension: 1 byte 1 byte 3 bytes 1 byte
C/C++ used data type unsigned int unsigned int structure of 3 unsigned int unsigned int

By storing numerical data, using binary format, it is obtaining a minimization in

memory size. Base don that, it results an article which contains:
- end mark fields as field1, field2, field4 and field5;
- fields with standard imposed by conversion length as field3, field6, field7 and field8.

The length of the compressed database BD’’ is

∑
=

′′ ++=
N

i

i
comp NNkL

1
DB *L

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

85

where k represents the number of fields that have end separator. For the others N-k fields,
through compression/conversion there have been obtained constant lengths. Also, it will be
used a marker to indicate the end of an article. For the table 1 example, the first article will
be saved in the form

Anghelache(10)#Ion(3)#Male(4)#Bucharest(9)#132(1)12(1)24/11/93(3)173(1)#

and it has the dimension equal with 37#32L)5(
1
art =+= bytes.

In the end, it is obtained the total length of 298 bytes for all 10 records and the

database dimension is =′′DBL 298 + 4*10 + 10 = 348, because k = 4 fields have string

markers.
For this data storage variant, the degree of space use efficiency has the value

DB

DB
u L

NNMkLG
′′

′′ −−
=

**
= 0,85

where M represents the size of the marker, in this case equal with one.
The solution proposed in previous variants is improved by the third variant by

defining a method that will not use end markers. The working context and the
implementation of the solution impose a series of restrictive conditions that will the base of
used data model.

It is considered the structure art that combines into a single article all the data
needed to process the entity. Its format is:

art { tip1 camp1; tip2 camp2; …; tips camps;}
In order to store data and minimize reserved memory space, it is implemented a

method to arrange the fields in a way in which two adjacent fields campi and campi+1 does

not have same type, 1+≠ ii tiptip cu i = 1..s-1. The situation allows the elimination of filed

end markers because the cross from one data type to another one is announced by the
different internal format.

For this approach, the size of a database that contains nart articles of this type, is

determined by the indicator ∑∑
= =

=
nart

i

s

j
ijBD sL

1 1
, in which sij represents the length of the j field

from the i article.
It is considered the data model implemented by the software application that

manages the database described in table 1. The difference between recorded data types
allows the use of current data storage variant, obtaining the article:

stud { Name; Height; First_name; Age; Gender; Date_of_Birth; City; School;}
Implementing this method, the first article of the database has its dimension

reduced to =1
compL 10 + 1 + 3 + 1 + 4 + 3 + 9 + 1 = 32.

It is observed that the fields dimension it is not modified from the previous solution
and it is obtained the total length of 298 bytes for all ten articles. The memory space

reserved for the entire database is =′′DBL 298 + 10 = 308 bytes. The reduced size is the

result of using only the article end markers.

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

86

For this data storage version, the indicator used to measure the efficiency of space

utilization has the value 96,0=uG , most of the bytes representing data used in the

processing activity.
In fourth variant, it is considered a vocabulary Vj that contains the set of distinct

values of the Cj collectivity elements.
The Vj set is described by the elements Vj = {vj1, vj2, …, vjh }, where vj1, vj2 are words

from the Vj vocabulary and lg(vji) describes the length of the vij word.
Any array of characters sij that represents the value of the j field of i article exists in

the collectivity vocabulary, Vj.
The supposition based on which is implemented this solution requires a the

presence of a large number of data and a limited number vocabulary. The greater repeating
degree of values means an increase efficiency of the method.

Each vocabulary word occupies a fixed position. The new form of the article will
contains the value position in vocabulary, replacing the characters array by a number.

The steps required for a proper application of the method are:
- it is defined the vocabulary V1, V2, …, VM for the all M characteristics used to describe

collectivity elements;
- the vocabularies are stored in a particular database BDV that the length equal with

Lg(BDV) = lg(V1) + lg(V2) + …+ lg(VM) = ∑
=

M

k
kV

1
)lg(

- it is developed the collectivity database, BDC, using values positions from the
vocabulary

Lg(BDC)= ∑∑
= =

N

i

M

j
ijPoz

1 1
)lg(

where Pozij is the field that represents the value vocabulary position for the ci element and Vj
vocabulary.

If it is defined that all the positions are represented by a field with length equal with

vocL′ , then the collectivity database length is

Lg(BDC) = M*N* vocL′ .

For the table 1 example it is defined the common vocabulary
VV = { Anghelache (1), Bujor (2), Biteanu (3), Cretu (4), Danciulescu (5), Ene (6), Ionescu (7), Ion (8),
Elena (9), Cristian (10), Roxana (11), Mihai (12), Catalin (13), Irina(14), Male(15), Female(16),
Bucharest(17), Iasi(18), Ploiesti(19)}

In parentheses are defined the values positions in the VV vocabulary. If it is
considered the maximum length Lmax = 11 for all the VV vocabulary values then Lg(BDV) =
19*11 = 209 bytes.

The positions required one byte, vocL′ = 1, so the size of the database article if

given by the relation

voc
1

il L*k)lg(s'L ′+= ∑
=

nc

l

i
art

where
nc – number of article fields that have the initial format; if these fields have

variable length then it is used an end marker to separate them;

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

87

ils' – the string value with the end marker;

k – number of fields that are replaced by their position in the vocabulary;
Lpoz – the length of the position field.
The size of the compressed database is determined by the indicator

L(BDC) = ()BDVLL
N

i

i
art +∑

=1

For the considered example it is obtained:
L(BDC) = () 11*46 art+ + () 21*46 art+ + … + () 101*46 art+ + 209 = 100 + 209 = 309 bytes.

This solution is more improved by minimizing the vocabulary dimension, because its
efficiency is directly dependent by the maximum size of vocabulary values and also by their
medium size. Because of the elements length variation, the implementation of a fixed size
structure will results in a waste of memory space. The use of elements end markers will
reduce the reserved space.

Implementing the ’#’ marker it is defined a vocabulary with the size equal with
L(BDV) = 118 + 19 *1 = 137 bytes. In this case the database lengths becomes L(BDC) =
100 + 137 = 237 bytes.

3. Selecting optimization method

There are considered optimization methods M1, M2, …, Mt to which are associated
modules into a software application intended to optimize educational data storage.

A file F represents the entry data for the considered application.
The result of data processing activity consists in obtaining the files E1, E2, …, Et, that

are created by correct optimization modules. The relation between modules and methods is
one to one. There are determined the indicators LG(E1), LG(E2), …, LG(Et). To optimize
storage files in a automate manner is equivalent to implementing in the software application
a module that will select LGmin = min{ LG(E1), LG(E2), …, LG(Et)} = LG(Ek). Based on that, it
results that the Mk storage methods is the most efficient and it is the method that will be
implemented in the final version of the product.

The software application is developed in C programming language and it
implements storage techniques previous described.

It is defined the data structure needed to store data regarding the high school
students database. It is considered the example described in table 4.

Table 4. Students database
No. Name First name PNC Height Weight School City

1 Alexandrescu Ionela 2… 145 47 175 Bucharest

2 Bratescu Catalin 1… 139 50 175 Buftea

3 Constantin Adrian 1… 145 50 160 Mihailesti

4 Constantin Mihai 1… 135 47 163 Bucharest

5 Gheorghe Florin 1… 137 49 179 Bucharest

6 Ionescu Gabriela 2… 139 44 3 Bucharest

7 Ionescu Adrian 1… 132 50 175 Bucharest

8 Popescu Adrian 1… 135 48 173 Otopeni

9 Popescu Alina 2… 139 41 160 Bucharest

10 Zamfir Ion 1… 135 50 3 Buftea

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

88

The methods used to store table 4 data are:
- a solution with high use degree in real applications and with a low complicity level is

given by the definition of a data structure; this is associated with each of the
database articles; the file saving operation is made without auxiliary data
processing; the data structure used to memorize students data is

struct stud
{
 char nume[13];
 char prenume[9];
 char cnp[14];
 unsigned short int inaltime;
 unsigned char greutate;
 unsigned short int scoala;
 char localitate[11];
};

the dimension of the stud article is 52 bytes; the dimension of the database that has
a normal form by saving the articles in the output file is LG(BDF) = 520 bytes; the
cod sequence that writes the data in the file is:

void salvareDate(FILE *pfisier, stud *listaStud, int dim)
{
 if(pfisier){
 for(int i=0;i<10;i++){
 fwrite(&listaStud[i],sizeof(stud),1,pfisier);
 }
 }
}

- the data are written in the file using the delimiter marker’#’ in order to separate the
articles fields; this solution is described by the first version of the storage methods;
the numerical values are converted into char arrays before writing them into the file;
it is obtained the BDseparator database and its dimension is LG(BDseparator) = 504 bytes;
the internal routine used to save data with the corresponding format is

void transformare1_OUT(stud *listaStud, int dim)
{
 FILE *pfisOUT = fopen("DateTEST.txt","wb");
 fwrite(&dim,sizeof(int),1,pfisOUT);
 for(int k=0;k<dim;k++){
 unsigned int j;
 char *rez;
 char inaltime[3];
 char greutate[2];
 char scoala[3];
 _itoa(listaStud[k].inaltime,inaltime,10);
 _itoa(listaStud[k].greutate,greutate,10);
 _itoa(listaStud[k].scoala,scoala,10);

int dim_Articol = strlen(inaltime) + strlen(greutate) + strlen(scoala) +
strlen(listaStud[k].nume) + strlen(listaStud[k].prenume) +
strlen(listaStud[k].localitate) + strlen(listaStud[k].cnp);

 rez = new char[dim_Articol+7];
 int i=0;
 for(j=0;j<strlen(listaStud[k].nume);j++,i++)
 rez[i]=listaStud[k].nume[j];

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

89

 rez[i]='#';
 i++;
 for(j=0;j<strlen(listaStud[k].prenume);j++,i++)
 rez[i]=listaStud[k].prenume[j];
 rez[i]='#';
 i++;
 for(j=0;j<strlen(listaStud[k].cnp);j++,i++)
 rez[i]=listaStud[k].cnp[j];
 rez[i]='#';
 i++;
 for(j=0;j<strlen(inaltime);j++,i++)
 rez[i]=inaltime[j];
 rez[i]='#';
 i++;
 for(j=0;j<strlen(greutate);j++,i++)
 rez[i]=greutate[j];
 rez[i]='#';
 i++;
 for(j=0;j<strlen(scoala);j++,i++)
 rez[i]=scoala[j];
 rez[i]='#';
 i++;
 for(j=0;j<strlen(listaStud[k].localitate);j++,i++)
 rez[i]=listaStud[k].localitate[j];
 rez[i]='#';
 i++;
 fwrite(rez,sizeof(char),dim_Articol+7,pfisOUT);
 delete rez;
 }
 fclose(pfisOUT);
}

- data are written in the output file using the character marker ’#’ to separate string
values of the stud article; numerical data are stored using their binary internal
format; this solution represents the implementation of the second storage version;
the obtained database, BDnumeric, has the dimension LG(BDnumeric) = 448 bytes; the
subprogram used to write the data is

void transformare2_OUT(stud *listaStud, int dim)
{
 FILE *pfisOUT = fopen("DateTEST2.txt","wb");
 fwrite(&dim,sizeof(int),1,pfisOUT);

 for(int k=0;k<dim;k++)
 {
 unsigned int j;
 char *rez;
 int dim_Articol = strlen(listaStud[k].nume) + strlen(listaStud[k].prenume)

+ strlen(listaStud[k].localitate) + strlen(listaStud[k].cnp);
 rez = new char[dim_Articol+4];

 int i=0;
 for(j=0;j<strlen(listaStud[k].nume);j++,i++)
 rez[i]=listaStud[k].nume[j];
 rez[i]='#';
 i++;
 for(j=0;j<strlen(listaStud[k].prenume);j++,i++)
 rez[i]=listaStud[k].prenume[j];
 rez[i]='#';

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

90

 i++;
 for(j=0;j<strlen(listaStud[k].cnp);j++,i++)
 rez[i]=listaStud[k].cnp[j];
 rez[i]='#';
 i++;
 for(j=0;j<strlen(listaStud[k].localitate);j++,i++)
 rez[i]=listaStud[k].localitate[j];
 rez[i]='#';
 i++;

 fwrite(rez,sizeof(char),dim_Articol+4,pfisOUT);

 fwrite(&listaStud[k].inaltime,sizeof(unsigned short int),1,pfisOUT);
 fwrite(&listaStud[k].greutate,sizeof(unsigned char),1,pfisOUT);
 fwrite(&listaStud[k].scoala,sizeof(unsigned short int),1,pfisOUT);

 delete rez;

 }
 fclose(pfisOUT);
}

- data are stored without using separator markers between article fields because the
structure of the stud article allows the relocation of a numeric field between two
string fields; despite the low disk space of the resulting output file, the solution given
by the third variant must be modified in practice in order to allow the placement of
the marker ‘#’ after each numeric value; this will reduce the effort to write code
sequences used to identify inside the file the limit between a string value and a
numeric one; the resulting database BDcombinat, formed without using the marker has
the dimension LG(BDcombinat) = 418 bytes, and the data saving routine is

void transformare3_OUT(stud *listaStud, int dim)
{
 FILE *pfisOUT = fopen("DateTEST3.txt","wb");
 fwrite(&dim,sizeof(int),1,pfisOUT);
 char StudentEnd = '#';
 for(int k=0;k<dim;k++)
 {
 fwrite(&listaStud[k].nume,strlen(listaStud[k].nume),1,pfisOUT);
 fwrite(&listaStud[k].inaltime,sizeof(unsigned short int),1,pfisOUT);
 fwrite(&listaStud[k].prenume,strlen(listaStud[k].prenume),1,pfisOUT);
 fwrite(&listaStud[k].greutate,sizeof(unsigned char),1,pfisOUT);
 fwrite(&listaStud[k].cnp,strlen(listaStud[k].cnp),1,pfisOUT);
 fwrite(&listaStud[k].scoala,sizeof(unsigned short int),1,pfisOUT);
 fwrite(&listaStud[k].localitate,strlen(listaStud[k].localitate),1,pfisOUT);
 fwrite(&StudentEnd,sizeof(char),1,pfisOUT);
 }
 fclose(pfisOUT);
}

for this solution it is not taken into discussion the reverse operation, used to read
data from file;

- data are saved into the file using a symbol vocabulary that contains the distinct string
values of article fields; in order to minimize the vocabulary dimension, its elements
are separated by the ‘#’ marker; inside the database, these values are replaced by
their vocabulary position; the new data structured for the stud article is in this case

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

91

struct pozvocabular
{
 unsigned char poznume;
 unsigned char pozprenume;
 unsigned char pozcnp;
 unsigned short int inaltime;
 unsigned char greutate;
 unsigned short int scoala;
 unsigned char pozloc;
};

the new database dimension is BDvocabular and it is obtained by summing the
vocabulary dimension and the values zone length, LG(BDvocabular) = 299 + 124 = 423
bytes; because the example dataset has reduced size, it is not highlighted this
solution efficiency; the code sequence used to convert the database from the normal
form to the current one is

void transformare4_OUT(stud *listaStud, int dim)
{
 vocabular *Vocabular = NULL;
 vocabular *VocabularEnd = NULL;
 int flag=0;

 FILE *pfisOUT = fopen("DateTEST4.txt","wb");
 fwrite(&dim,sizeof(int),1,pfisOUT);

 // se construieste vocabularul
 pozvocabular elemCurent;
 int elemDictionar = 0;

 for(int k=0;k<dim;k++)
 {
 elemCurent.greutate=listaStud[k].greutate;
 elemCurent.inaltime=listaStud[k].inaltime;
 elemCurent.scoala=listaStud[k].scoala;
 flag = IsInVocabular(listaStud[k].nume,Vocabular);
 if(flag==-1)
 {
 AddVocabular(listaStud[k].nume,Vocabular, VocabularEnd);
 elemCurent.poznume=elemDictionar;
 elemDictionar++;
 }
 else
 elemCurent.poznume=flag;

 flag = IsInVocabular(listaStud[k].prenume,Vocabular);
 if(flag==-1)
 {
 AddVocabular(listaStud[k].prenume,Vocabular, VocabularEnd);
 elemCurent.pozprenume=elemDictionar;
 elemDictionar++;
 }
 else
 elemCurent.pozprenume=flag;

 flag = IsInVocabular(listaStud[k].cnp,Vocabular);
 if(flag==-1)
 {
 AddVocabular(listaStud[k].cnp,Vocabular, VocabularEnd);

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

92

 elemCurent.pozcnp=elemDictionar;
 elemDictionar++;
 }
 else
 elemCurent.pozcnp=flag;

 flag = IsInVocabular(listaStud[k].localitate,Vocabular);
 if(flag==-1)
 {
 AddVocabular(listaStud[k].localitate,Vocabular, VocabularEnd);
 elemCurent.pozloc=elemDictionar;
 elemDictionar++;
 }
 else
 elemCurent.pozloc=flag;

 fwrite(&elemCurent,sizeof(pozvocabular),1,pfisOUT);
 }
 fclose(pfisOUT);

 pfisOUT = fopen("DateTEST4Vocabular.txt","wb");
 fwrite(&elemDictionar,sizeof(int),1,pfisOUT);

 char caracterVocab = '#';

 if(Vocabular!=NULL)
 for(vocabular *temp = Vocabular;temp!=NULL;temp=temp->next)
 {
 fwrite(temp->element,strlen(temp->element),1,pfisOUT);
 fwrite(&caracterVocab,sizeof(char),1,pfisOUT);
 }
 fclose(pfisOUT);
}

For each of the described routines there has been recorded a set of parameters,

which are described in table 5. The developing environment of current software application
is Microsoft Visual Studio 6.0, without using compiler specific optimization options. For
measuring the processing effort of implemented solutions it has been used the Visual Studio
environment profiler.

Table 5. Parameters recorded for different data storage methods
Output database Dimension

(bytes)
Vocabulary

(bytes)
Database

(bytes)
Save

(mseconds)
Load

(mseconds)

BDF 520 - 520 0.032 0.039
BDseparator 504 - 504 0.618 0.124
BDnumeric 448 - 448 0.713 0.121
BDcombinat 418 - 418 0.582 -
BDvocabular 124 299 423 1.235 0.233

From the table 5 values it is observed that the processing effort increase depending

on the minimization degree of stored data dimension. Despite that BDvocabular has a bigger
dimension than the BDcombinat one, in real cases, with a great number of data, the last
solution will conduct to better results.

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

93

Conclusions

Real world collectivities have defined descriptions accordingly to needed objectives.
From this point of view it is important to define article structures that are enough flexible so
that changes in objectives will not affect them in a radical manner.

In the analysis phase, for each database and file there are developed new storage
solutions, the designers’ vision having an important impact on that. Taking into discussion
and promoting new solutions there are defined the premises for further development of the
creative spirit into the direction of adapting all optimization instruments, techniques,
methods and algorithms for particular cases. The objective is to obtain numerous different
solution for storing data in order to analyze them and to select the one that gives the best
results.

For each problem there are defined specific performance criteria and the
procedures used to measure optimization effects, providing in this manner the base for
variants comparability.

As there is accumulated more experience regarding data storage optimization there
will be obtained homogenous databases that have efficient storing techniques.

Based on practical experience there are defined optimal storage procedure,
specifying which storage method give best results for a database that has well defined
characteristics.

Bibliography

1. Catalin BOJA Software Multicriterial Optimization, The Proceedings of the Seventh

International Conference of Informatics in Economy, Academy of Economic Studies,
Bucharest, Romania, Inforec Printing House, p. 1068 – 1074, May 2005

2. Graeme C. Simsion and Graham C. Witt Data Modeling Essentials, Third Edition, Morgan
Kaufmann Publishers, 2005

3. IEEE Standards Collection Software Engineering, Std. 1061-1992 IEEE standard for software
quality metrics methodology, Published by The Institute of Electrical and Electronics
Engineers, New York, 1994

4. ISO/IEC 9126 International Standard - Information Technology Software product evaluation -
Quality characteristics and guidelines for their use, Geneve, Switzerland, 1991

5. Ion IVAN, Catalin BOJA Statistical methods in software analysis, ASE Printing House, 2004 (in
Romanian)

6. Ion IVAN, Catalin BOJA Empirical Software Optimization, Economic Informatics Magazine, vol.
IX, nr. 2/2005, Inforec Printing House, Bucharest, 2005 (in Romanian)

7. Ion IVAN, Catalin BOJA Global Software Optimization, p. 205 – 214, “Information Systems &
Operations Management – ISOM” no. 3 Workshop, April 20 – 21, 2005 Romanian
American University Master of Economic Informatics, Academy of Economic Studies
Master BRIE, Bucharest, ProUniversalis Printing House, 2005

8. Ion IVAN, Catalin BOJA Optimizarea bicriteriala a produselor program, Economic Informatics
Magazine, vol. 10, nr. 1/2006, p. 17 – 24

9. Ion IVAN, Gh. NOSCA, O PARLOG, S. TCACIUC Data quality, Inforec Printing House, Bucharest,
1999 (in Romanian)

www.manaraa.com

Education in the Romanian Information Society

in the Period Leading Up to EU Integration

94

10. Gh. Nosca, I. Ivan, A. Parlog Data Quality Assurance, Quality Assurance Review, vol. 2, no. 8,
1998, p. 8-14

11. Laurentiu TEODORESCU, Ion IVAN Managementul Calitatii Software, Inforec Printing House,
Bucharest, 2001

1 Catalin Boja is Assistant Lecturer at the Economic Informatics Department at the Academy of Economic Studies in
Bucharest, Romania. In June 2004 he has graduated the Faculty of Cybernetics, Statistics and Economic Informatics
at the Academy of Economic Studies in Bucharest. In March 2006 he has graduated the Informatics Project
Management Master program organized by the Academy of Economic Studies of Bucharest. He is a team member
in various undergoing university research projects where he applied most of his project management knowledge.
Also he has received a type D IPMA certification in project management from Romanian Project Management
Association which is partner of the IPMA organization.
He is the author of more than 40 journal articles and scientific presentations at conferences. His work focuses on
the analysis of data structures, assembler and high level programming languages. He is currently conducting a PhD
study on software optimization and on improvement of software applications performance.

